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Stopping Times
Definition: For a Markov Chain {Xn}n≥0 on I , a stopping time
T : Ω→ N ∪ {∞} is a Stoppping time if for every n

{T = n} ∈ σ(X0,X1 · · ·Xn) ≡ Fn

(which is equivalent to ∀n{T = n} ∈ Fn).
So for a stopping time T , for every n, there is a subset of I n+1, A(T , n)
so that

{T = n} ≡ {(X0,X1, · · ·Xn) ∈ A(T , n)}.

Note that T is a random variable (in the extended sense).
Examples:
For A ⊂ I , T = inf{n : Xn ∈ A}.
T = inf{n : ∃0 ≤ i < j ≤ n : Xi = Xj}.
T cannot be a stopping time if for m > n, there are two distinct vectors
x = (x0, x1, · · · xm) and y = (y0, y1, · · · ym) so that xk = yk∀k ≤ n and so
that {Xi = xi∀i ≤ m} =⇒ {T = n} but
{Xi = yi∀i ≤ m} =⇒ {T 6= n}



Strong Markov Property

Theorem
For a stopping time T and i ∈ I , conditional on T <∞,XT = i , the
process

(Zn)n≥0 ≡ (XT+n)n≥0

is a (δi ,P) Markov chain conditionally independent of (X0,X1 · · ·XT )



Recurrence

Definition: For a transition matrix on I , we say that site i is recurrant if

Pi(Ti < ∞) = 1

where Ti = inf{n ≥ 1 : Xn = i}. If this is not so then i is said to be
transient.

Lemma
i is recurrent if and only if

Pi(Xn = i for infinitely many n) = 1



We introduce notation T 0
i = 0, T r+1

i = inf{n > T r
i : Xn = i}. Every T r

i

is a stopping time.

Proof.
If i is recurrent by the Strong Markov applied at stopping time T = T r

i

Pi(T
r+1
i <∞ | T r

i <∞) = Pi(Ti < ∞) = 1

so by induction on r , Pi(T
r
i < ∞) = 1∀r .



Transience

Lemma
For i transient, then ∀j ∈ I

Pj(T
r
i < ∞) ≤ (Pi(Ti < ∞))r−1

Proof.
We use induction on r . The bound obviously holds for r = 1. Suppose it
holds for r , then

Pj(T
r+1
i <∞ | T r

i <∞) = Pi(Ti < ∞)

and so
Pj(T

r+1
i <∞) = Pj(T

r
i <∞)Pi(Ti < ∞) = (Pi(Ti < ∞))r .



A necessary and sufficient condition
Theorem
A site i ∈ I is recurrent if and only if∑

n

pnii = ∞

Proof.∑n
r=1 pii = Ei(

∑n
r=1 IXr=i) is the expectation of the numbber of visits toi

up to and including time n. If i is recurrent, then as n tends to infinity,
this expectation must tend to infinity. If i is transient, then the
expectation(starting from i) of Ni , the number of visits (for n ≥ 1) is
exactly ∑

r

Pi(T
r
i <∞) =

∑
r

Pi(N ≥ r) =
∑
r

Pi(Ti <∞)r

= Pi (Ti<∞)
1−Pi (Ti<∞)

<∞. And we have
∑∞

r=1 pii <∞.



Recurrent communicating classes
Consider a transition matrix P . This matrix partitions I into
communicating classes and determines whether a site is recurrent or
transient. In fact

Theorem
For a communicating class for P, either all sites are recurrent or all are
transient.

Proof.
It is enough to show that if for communicating class C a site in it is
recurrent then any other site j ∈ C must be recurrent. Suppose for i ∈ C
that i is recurrent, so

∑
n p

n
ii =∞. Given j ∈ C , by the definition of

communicating class, there exist positive integers r and s so that
prijp

s
ji > 0. Then

∞∑
n=1

pnjj ≥
∞∑

n=r+s

pnjj ≥
∑
k=1

psjip
k
iip

r
ij

= prijp
s
ji

∑
k=1 p

k
ii = ∞.



Given the preceding definition the following definitions make sense

a A communicating class is said to be transient if a single site in it is
transient. Equivalently if all sites in it are transient.

b A communicating class is said to be recurrent if a single site in it is
recurrent. Equivalently if all sites in it are recurrent.

c A Markov chain is said to be recurrent if all sites are recurrent, it is
said to be transient if all sites are transient. A Markov chain need not
be recurrent or transient.

d An irreducible Markov chain is recurrent if a site is recurrent (or
equivalently if all sites are recurrent). Otherwise it is transient.


